An Improved Convergence and Complexity Analysis for the Interpolatory Newton Method
نویسنده
چکیده
We provide an improved compared to [5]–[7] local convergence analysis and complexity for the interpolatory Newton method for solving equations in a Banach space setting. The results are obtained using more precise error bounds than before [5]–[7] and the same hypotheses/computational cost. RESUMEN Nosotros entregamos aqúı un análisis de convergencia local y complejidad para el método de interpolación de Newton para resolver ecuaciones en espacios de Banach. Los resultados mejoran los de [5]–[7] e son obtenidos usando mas precisas cotas de error y las mismas hipotesis y costo computacional.
منابع مشابه
An efficient improvement of the Newton method for solving nonconvex optimization problems
Newton method is one of the most famous numerical methods among the line search methods to minimize functions. It is well known that the search direction and step length play important roles in this class of methods to solve optimization problems. In this investigation, a new modification of the Newton method to solve unconstrained optimization problems is presented. The significant ...
متن کاملAn infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step
An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملSolving systems of nonlinear equations using decomposition technique
A systematic way is presented for the construction of multi-step iterative method with frozen Jacobian. The inclusion of an auxiliary function is discussed. The presented analysis shows that how to incorporate auxiliary function in a way that we can keep the order of convergence and computational cost of Newton multi-step method. The auxiliary function provides us the way to overcome the singul...
متن کاملHigh - order Newton - type iterative methods with memory for solving nonlinear equations ∗
In this paper, we present a new family of two-step Newton-type iterative methods with memory for solving nonlinear equations. In order to obtain a Newton-type method with memory, we first present an optimal two-parameter fourth-order Newton-type method without memory. Then, based on the two-parameter method without memory, we present a new two-parameter Newton-type method with memory. Using two...
متن کامل